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Helmut's cookbook recipe number 4: 

Vector Calculation in Index Notation 
(Einstein's Summation Convention) 

 (Version 10, 8.3.2025) 

This "cookbook recipe" explains how to convert vector calculations into index notation according to Einstein's 
summation convention, perform a calculation in this index notation, and back-convert the final result into vec-
tor notation. Here, a Euclidean metric is assumed (e.g. calculations in ℝ3), and therefore no distinction is made 
between co- and contravariant indices. 

1 General information 

1.1 Fundamentals 

In conventional vector notation, one writes a vector with 𝑛 components as follows: 

 �⃗� = (

𝑣1
…
𝑣𝑛
) (1) 

In index notation, you simply write 𝑣𝑖, where the index 𝑖 stands for the 𝑖-th vector component of �⃗�: 

 (�⃗�)𝑖 = 𝑣𝑖  (2) 

If you write 𝑣𝑖  this stands for a single, selected component of the vector (namely the 𝑖-th). Thus 𝑣𝑖  initially rep-
resents a scalar value (a number). On the other hand, you can replace 𝑖 with any number between 1 and 𝑛 and 
thus 𝑣𝑖  also represents the entire vector �⃗� (instead of 𝑖, any other letter can of course also be used as an in-
dex). A term with a single index (the so-called "free index") therefore represents a vector in index notation. 

1.2 Summation Convention 

If the same index occurs exactly twice in a product term (if it is "saturated"), it implies summation of that term 
over all the values of the index ("Einstein's summation convention"). For example: 

 𝑎𝑖𝑣𝑖 ≡∑ 𝑎𝑖𝑣𝑖
𝑛

𝑖=1
= 𝑎1𝑣1 +⋯+ 𝑎𝑛𝑣𝑛 (3) 

The example above corresponds to the inner product of two vectors.  

 (�⃗� ∙ �⃗�)𝑖 = 𝑎𝑖𝑣𝑖  (4) 

Two variables with the same index in the same product term ("saturated index") therefore represent an 
inner vector product and thus a scalar. 
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Rules: 

 The same index may never appear more than twice in a product term 

 A fraction is also a product term! 

 As a beginner, perhaps do not write 𝑎𝑖
2, but 𝑎𝑖𝑎𝑖 , so that you recognize that you are adding over 𝑖 . 

 √𝑎𝑖𝑎𝑖  means√∑ 𝑎𝑖𝑎𝑖
𝑛
𝑖=1 , not ∑ √𝑎𝑖𝑎𝑖

𝑛
𝑖=1  

 Big simplification: Because, for example 𝑎𝑖, 𝑏𝑖  and 𝑐𝑗  represent the 𝑖-th or, respectively, the 𝑗-th com-
ponent of the vectors �⃗�, �⃗⃗� and 𝑐 (i.e. they are scalars), their order in a product term does not matter at 
all: 𝑎𝑖𝑏𝑖𝑐𝑗 = 𝑐𝑗𝑎𝑖𝑏𝑖 = 𝑏𝑖𝑐𝑗𝑎𝑖 = 𝑏𝑖𝑎𝑖𝑐𝑗 = 𝑐𝑗𝑏𝑖𝑎𝑖  

1.3 Free index and saturated indices 

If there are only double ("saturated") indices in a product term, then this term represents a scalar expression. 
Example: 𝑎𝑖𝑏𝑖𝑐𝑗𝑑𝑗 . Note that, if this is the case in one term, then all product terms that are connected to this 

term additively or subtractively must have only saturated indices (because, an addition or subtraction of a 
vector and a scalar is not possible).  

Conversely: If there is a "free" index in a product term (i.e. an index that only occurs once), then this product 
term represents a vector. The left and right sides of the equation, as well as all occurring terms, must have the 
same free index. 

Correct: 

 𝑐𝑗 = 𝑎𝑖𝑢𝑖𝑣𝑗 + 𝑏𝑘𝑣𝑘𝑣𝑗  (vector) (5) 

 𝛼 = 𝑎𝑖𝑢𝑖 + 𝑏𝑗𝑣𝑗  (scalar) (6) 

Incorrect: 

 𝑐𝑗 = 𝑎𝑖𝑢𝑖𝑣𝑗 + 𝑏𝑖𝑣𝑖𝑣𝑘  (7) 

 𝑐𝑗 = 𝑎𝑖𝑢𝑖 + 𝑏𝑖𝑣𝑖𝑣𝑗  (8) 

 𝛼 = 𝑎𝑖𝑏𝑖𝑐𝑖 + 𝑏𝑖𝑣𝑖𝑣𝑗  (9) 

 Mistake in (7): The free index 𝑘 on the right side does not match the free index 𝑗 on the left side of the 
equation. 

 Mistake in (8): On the left side of the equation there is a vector (free index 𝑗), but the term 𝑎𝑖𝑢𝑖  is a 
scalar. 

 Mistake in (9): The term 𝑎𝑖𝑏𝑖𝑐𝑖  contains the same index three times, and there is also a scalar on the 
left-hand side of the equation, and the right-hand expression 𝑏𝑖𝑣𝑖𝑣𝑗  with free index 𝑗 represents a vec-

tor. 

Also note that the designation of the saturated indices can be chosen arbitrarily, e.g: 

 𝑐𝑗 = 𝑎𝑖𝑢𝑖𝑣𝑗 = 𝑎𝑗𝑢𝑗𝑣𝑗 = 𝑎𝑘𝑢𝑘𝑣𝑗 = ⋯ (10) 

 

 α = 𝑎𝑖𝑐𝑖𝑢𝑗𝑣𝑗 = 𝑎𝑗𝑐𝑗𝑢𝑖𝑣𝑖 = 𝑎𝑚𝑐𝑚𝑢𝑛𝑣𝑛 = ⋯ (11) 
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2 Special Symbols 

2.1 Position Vector 

We want to use the convention here that we always use the letter 𝑥 for the position vector, i.e. in vector nota-
tion 

 �⃗� = (

𝑥1
𝑥2
𝑥3
) ≡ (

𝑥
𝑦
𝑧
) , (12) 

or in index notation 

 (�⃗�)𝑖 = 𝑥𝑖 , (13) 

whereby 𝑥1 stands for 𝑥, 𝑥2 stands for 𝑦, and 𝑥3 stands for 𝑧. In contrast, all other letters stand for vector fields 
in which each component can (potentially) depend on all three spatial directions (and also on the time 𝑡), e.g: 

 �⃗� = (

𝑣1(𝑥, 𝑦, 𝑧, 𝑡)

𝑣2(𝑥, 𝑦, 𝑧, 𝑡)

𝑣3(𝑥, 𝑦, 𝑧, 𝑡)
) ≜ 𝑣𝑖  (14) 

2.2 Spatial Derivative 

 ∇⃗⃗⃗𝑖= 𝜕𝑖 ≝
𝜕

𝜕𝑥𝑖
 ⇔  𝜕1 =

𝜕

∂𝑥
 , 𝜕2 =

𝜕

∂𝑦
 , 𝜕3 =

𝜕

∂𝑧
  (15) 

Note: We follow the convention that the differential operator only acts on the object immediately to the right 
of it. Therefore: Always use parentheses if the operator acts on several objects, and if you prefer so, also oth-
erwise for clarity. For example, the product rule is 

 𝜕𝑖(𝑢𝑖𝑣𝑗) = (𝜕𝑖𝑢𝑖)𝑣𝑗 + 𝑢𝑖(𝜕𝑖𝑣𝑗) ≡ 𝜕𝑖𝑢𝑖𝑣𝑗 + 𝑢𝑖𝜕𝑖𝑣𝑗  (16) 

2.3 Time Derivative 

 𝜕𝑡 ≝
𝜕

𝜕𝑡
 (17) 

To avoid confusion, it is advisable not to use the letter 𝑡 as an index. 

2.4 Kronecker Delta 

 𝛿𝑖𝑗 = {
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

 (18) 
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2.5 Levi Civita Symbol 

 𝜀𝑖𝑗𝑘… = {

1, if (𝑖𝑗𝑘 … ) is an even permutation of (123… )                

−1, if(𝑖𝑗𝑘 … ) is an odd permutation of (123… )                      

0 otherwise (i. e. if at least two indices are identical)     

 (19) 

Examples: 

 𝜀123 = 1 (according to definition) 

 𝜀132 = −1 (because a single permutation is necessary: 𝜀123 → 𝜀132) 

 𝜀312 = 1 (because two permutations are necessary: 𝜀123 → 𝜀132 → 𝜀312) 

 𝜀122 = 0 (because the index 2 occurs twice) 

3 Index Notation When Applying the Chain Rule 

Vector Notation Equivalent Index Notation Free Index 

�⃗⃗� f(g(𝑥, 𝑦, 𝑧)) =
𝜕f

𝜕g
∇⃗⃗⃗g(𝑥, 𝑦, 𝑧) 𝜕𝑖 f(g) = f

′(g) 𝜕𝑖g 𝑖 

𝜕

𝜕𝑡
�⃗�(�⃗⃗⃗�(𝑥, 𝑦, 𝑧, 𝑡)) = 𝐷�⃗�(�⃗⃗⃗�)⏟    

Fréchet−
derivative

∙
𝜕

𝜕𝑡
�⃗⃗⃗�(𝑡) 𝜕𝑡 𝑣𝑖(�⃗⃗⃗�) = 𝜕𝑗𝑣𝑖𝜕𝑡𝑤𝑗  𝑖 

4 Conversion Between Vector and Index Notation 

Rule Object/Operation Vector Notation Equivalent Index Notation Free Index 

(a) Vector �⃗� 𝑣𝑖  𝑖 

(b) Scalar Product �⃗⃗� ∙ �⃗� 𝑢𝑖𝑣𝑖  - 

(c) Magnitude Squared ‖�⃗�‖2 = �⃗� ∙ �⃗� 𝑣𝑖𝑣𝑖  - 

(d) Vector Length ‖�⃗�‖ = √�⃗� ∙ �⃗� √𝑣𝑖𝑣𝑖  - 

(e) Gradient (scalar) ∇⃗⃗⃗ f(𝑥, 𝑦, 𝑧) 𝜕𝑖f 𝑖 

(f) Divergence ∇⃗⃗⃗ ∙ �⃗� 𝜕𝑖𝑣𝑖  - 

(g) Cross Product u⃗⃗ × �⃗� 𝜀𝑖𝑗𝑘𝑢𝑗𝑣𝑘  𝑖 

(h) Rotation ∇⃗⃗⃗ × �⃗� 𝜀𝑖𝑗𝑘𝜕𝑗𝑣𝑘  𝑖 

(i) Gradient (Vectorial) grad(�⃗�) ≡ ∇⃗⃗⃗ ⊗ �⃗� ≡ ∇⃗⃗⃗�⃗� (∇⃗⃗⃗�⃗�)
𝑖𝑗
≜ 𝜕𝑖𝑣𝑗  𝑖, 𝑗 

(j) Laplacian (Scalar) ∇⃗⃗⃗2 f(𝑥, 𝑦, 𝑧) = ∇⃗⃗⃗ ∙ (∇⃗⃗⃗f) 𝜕𝑖𝜕𝑖𝑓 𝑖 

(k) 
Laplacian  

(Vectorial) 
∇⃗⃗⃗2�⃗� = (

∇⃗⃗⃗2𝑣1

∇⃗⃗⃗2𝑣2

∇⃗⃗⃗2𝑣3

) 𝜕𝑗𝜕𝑗𝑣𝑖  𝑖 

(l) 
Directional Derivative  

of �⃗� along �⃗⃗� 
(�⃗⃗� ⋅ ∇)�⃗� 𝑢𝑗𝜕𝑗𝑣𝑖  𝑖 

(m) Matrix-Vector Multiplication M̳�⃗� M𝑖𝑗𝑣𝑗  𝑖 

Note regarding point (i) (vectorial gradient): The result of this operation is (in conventional vector notation) a 
tensor of level two, which can be written as a matrix. The index 𝑖 represents the rows, and the index 𝑗 the col-
umns of the matrix. Also in point (m), index 𝑖 represents the rows and index 𝑗 the columns of matrix M̳. 
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5 Calculation Rules and Transformations 

 𝛿𝑖𝑗 = 𝛿𝑗𝑖  (20) 

 𝛿𝑖𝑖 = 𝑛 (21) 

 𝛿𝑖𝑗𝛿𝑗𝑘 = 𝛿𝑖𝑘  (22) 

 𝛿𝑖𝑗𝑎𝑖 = 𝑎𝑗  (23) 

 𝛿𝑖𝑗𝑎𝑗 = 𝑎𝑖  (24) 

 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 = det (
𝛿𝑖𝑙 𝛿𝑖𝑚
𝛿𝑗𝑙 𝛿𝑗𝑚

) = 𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙 (25) 

 𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑙 = 2𝛿𝑘𝑙 (26) 

 𝜀𝑖𝑗𝜀𝑖𝑗 = 2!; 𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑘 = 3!; 𝜀𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑘𝑙 = 4!, … (27) 

 𝜀𝑖𝑗𝑘𝛿𝑖𝑗 = 0; 𝜀𝑖𝑗𝑘𝛿𝑖𝑘 = 0; 𝜀𝑖𝑗𝑘𝛿𝑗𝑘 = 0 (28) 

 𝜕𝑖𝑥𝑗 = 𝛿𝑖𝑗 (29) 

 𝜕𝑖𝑥𝑖 = 𝛿𝑖𝑖 = 𝑛 (30) 

 𝜀𝑖𝑗𝑘 = −𝜀𝑗𝑖𝑘 = −𝜀𝑖𝑘𝑗 = −𝜀𝑘𝑗𝑖  (31) 

 𝜀𝑖𝑗𝑘 = 𝜀𝑘𝑖𝑗 = 𝜀𝑗𝑘𝑖 (32) 

 𝜀𝑖𝑗𝑘𝜕𝑖𝜕𝑗𝑎𝑘 = 𝜀𝑖𝑗𝑘𝜕𝑖𝜕𝑘𝑎𝑗 = 𝜀𝑖𝑗𝑘𝜕𝑗𝜕𝑘𝑎𝑖 = 0 (33) 

Notes regarding calculation rule (25): 

 If the index naming is different, you can of course rename the indices accordingly for clarity (but then 
of course in the whole equation for the free index) 

 If the index sequence is different, the indices can be combined taking into account rule (19) until you 
reach the representation (25). 

Notes on the calculation rules (21) and (33): 

 The letter 𝑛 stands for the number of dimensions (for calculations in ℝ3 it is therefore 𝑛 = 3).  

6 Strategy 

Here is a strategy for conversion and calculation: 

1. First, consider the given equation in vector notation. Which parts represent scalars? Vector products 
or gradients are scalars, for example. Which parts are vector-valued? Is the total expression a vector 
or a scalar? 

2. Now use the rules from chapter 4 to convert the expression. Proceed step by step and assign the free 
index to the sub-expression that makes the overall expression a vector.  

Example: Given, for example, the expression (34) 

 �⃗� = (�⃗� ∙ �⃗⃗�)𝑐 (34) 

(�⃗� ∙ �⃗⃗�) is scalar, only through 𝑐 the total expression becomes vectorial again. Let's assign the free in-

dex and call it 𝑖. 

 (�⃗�)𝑖 = (�⃗� ∙ �⃗⃗�)(𝑐)𝑖 (35) 

In index notation: 

 𝑣𝑖 = (�⃗� ∙ �⃗⃗�)𝑐𝑖  (36) 
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We convert the vector �⃗� using rule (a) from chapter 4 and the scalar product �⃗� ∙ �⃗⃗� using rule (b) from 
chapter 4 where we make sure that we have already used the index 𝑖 has already been used: 

 𝑣𝑖 = 𝑎𝑗𝑏𝑗𝑐𝑖  (37) 

3. The converted equation can now be calculated using the calculation rules from chapter 5 to transform 
it. Often you first try to use rules (25), (26), (27) and (28) to either get rid of the Levi-Civita symbols or 
to convert them into Delta symbols, which can then be converted using the rules (20), (21), (22), (23) 
and (24) are "contracted" with the variables. 

4. For derivatives, strictly observe the product or quotient rule. Important: Don't forget the parentheses 
that indicate what a particular differential operator acts on! Then rules (29) and (33) apply. 

5. If an index occurs more than twice when multiplying out brackets, always assign new index names. 
6. Do not forget: In a product term, the variables can be arranged in any order. 𝑎𝑗𝑏𝑗𝑐𝑖  is the same as 

𝑎𝑗𝑐𝑖𝑏𝑗 . Both represent the vector expression (�⃗� ∙ �⃗⃗�)𝑐. 
7. With the help of the rules from chapter 4 the equation can be converted back to vector notation. 

7 Example 
The following equation is to be transformed (where �⃗� is a constant vector): 

 �⃗� = ∇⃗⃗⃗ ×
�⃗� × �⃗�

‖�⃗�‖
 (38) 

Obviously there is a vector on both sides of the equation. We assign the free index 𝑖 and use rule (h) from chap-
ter 4 to convert the first cross product: 

 𝑣𝑖 = 𝜀𝑖𝑗𝑘𝜕𝑗 (
�⃗� × �⃗�

‖�⃗�‖
)
𝑘

 (39) 

We continue with the cross product in the numerator. Here, the free index of the partial expression �⃗� × �⃗� 
(which is no longer free in the total term due to 𝜀𝑖𝑗𝑘) according to equation (39) is already determined by 𝑘 : 

 𝑣𝑖 = 𝜀𝑖𝑗𝑘𝜕𝑗
𝜀𝑘𝑙𝑚𝑞𝑙𝑥𝑚
‖�⃗�‖

 (40) 

Finally, we can also substitute ‖�⃗�‖ by using rule (d) from chapter 4, where we note that the indices 𝑖, 𝑗, 𝑘, 𝑙 and 
𝑚 are already assigned: 

 𝑣𝑖 = 𝜀𝑖𝑗𝑘𝜕𝑗
𝜀𝑘𝑙𝑚𝑞𝑙𝑥𝑚

√𝑥𝑛𝑥𝑛
 (41) 

𝜀𝑘𝑙𝑚 and 𝑞𝑖  are constant. We can therefore place them in front of the differential operator 𝜕𝑗. We can also 

express  
1

√𝑥𝑛𝑥𝑛
 as (𝑥𝑛𝑥𝑛)

−1/2 : 

 𝑣𝑖 = 𝑞𝑙𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚𝜕𝑗 [𝑥𝑚(𝑥𝑛𝑥𝑛)
−
1
2
  ] (42) 

We apply the product rule: 

 𝑣𝑖 = 𝑞𝑙𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 [𝜕𝑗(𝑥𝑚)(𝑥𝑛𝑥𝑛)
−
1
2
  + 𝑥𝑚𝜕𝑗(𝑥𝑛𝑥𝑛)

−
1
2
  ] (43) 

According to rule (29) we can substitute 𝜕𝑗(𝑥𝑚) = 𝛿𝑗𝑚 

 𝑣𝑖 = 𝑞𝑙𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 [𝛿𝑗𝑚(𝑥𝑛𝑥𝑛)
−
1
2
  + 𝑥𝑚𝜕𝑗(𝑥𝑛𝑥𝑛)

−
1
2
  ] (44) 
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Side calculation of 𝝏𝒋(𝒙𝒏𝒙𝒏)
−
𝟏

𝟐
  :  

We apply the chain rule: 

 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1
2
  = −

1

2
(𝑥𝑛𝑥𝑛)

−
3
2
  𝜕𝑗(𝑥𝑛𝑥𝑛) (45) 

On 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1

2
   we apply the product rule: 

 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1
2
  = −

1

2
(𝑥𝑛𝑥𝑛)

−
3
2
  [𝜕𝑗(𝑥𝑛)𝑥𝑛 + 𝑥𝑛𝜕𝑗(𝑥𝑛)] (46) 

Of course 𝜕𝑗(𝑥𝑛)𝑥𝑛 + 𝑥𝑛𝜕𝑗(𝑥𝑛) = 2𝑥𝑛𝜕𝑗𝑥𝑛: 

 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1
2
  = −

1

2
(𝑥𝑛𝑥𝑛)

−
3
2
  2𝑥𝑛𝜕𝑗𝑥𝑛 (47) 

According to rule (29) 𝜕𝑗𝑥𝑛 = 𝛿𝑗𝑛. Additionally, ½ cancels out with 2: 

 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1
2
  = −(𝑥𝑛𝑥𝑛)

−
3
2
  𝑥𝑛𝛿𝑗𝑛 (48) 

According to rule (24) 𝑥𝑛𝛿𝑗𝑛 = 𝑥𝑗: 

 𝜕𝑗(𝑥𝑛𝑥𝑛)
−
1
2
  = −𝑥𝑗(𝑥𝑛𝑥𝑛)

−
3
2
   (49) 

End of side calculation 

We now substitute the result of the side calculation (49) into equation (44): 

 𝑣𝑖 = 𝑞𝑙𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 [𝛿𝑗𝑚(𝑥𝑛𝑥𝑛)
−
1
2
  − 𝑥𝑚𝑥𝑗(𝑥𝑛𝑥𝑛)

−
3
2
  ] (50) 

Of course, this can also be written like this: 

 𝑣𝑖 = 𝑞𝑙𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 [
𝛿𝑗𝑚

√𝑥𝑛𝑥𝑛
−

𝑥𝑚𝑥𝑗
(𝑥𝑛𝑥𝑛)

3/2  
] (51) 

We multiply 𝑞𝑙 into the bracket: 

 𝑣𝑖 = 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 [
𝑞𝑙𝛿𝑗𝑚

√𝑥𝑛𝑥𝑛
−

𝑞𝑙𝑥𝑚𝑥𝑗
(𝑥𝑛𝑥𝑛)

3/2  
] (52) 

We convert 𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 by means of rule (25): 

 𝑣𝑖 = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) [
𝑞𝑙𝛿𝑗𝑚

√𝑥𝑛𝑥𝑛
−

𝑞𝑙𝑥𝑚𝑥𝑗
(𝑥𝑛𝑥𝑛)

3/2  
] (53) 

Expanding the terms results into: 

 𝑣𝑖 =
𝑞𝑙𝛿𝑗𝑚𝛿𝑖𝑙𝛿𝑗𝑚

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑗𝑚𝛿𝑖𝑚𝛿𝑗𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑙𝛿𝑗𝑚

(𝑥𝑛𝑥𝑛)
3
2
 
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (54) 

The numerator of the first fraction contains 𝛿𝑗𝑚𝛿𝑗𝑚. According to rule (20) this is equal to 𝛿𝑗𝑚𝛿𝑚𝑗. According to 

rule (22) this contracts to 𝛿𝑗𝑗 and according to rule (21) is equal to the dimension 𝑛 (here: 3). Therefore 

𝛿𝑗𝑚𝛿𝑗𝑚 = 𝛿𝑗𝑗 = 3, and therefore : 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑗𝑚𝛿𝑖𝑚𝛿𝑗𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑙𝛿𝑗𝑚
(𝑥𝑛𝑥𝑛)

3/2 
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (55) 

The numerator of the second fraction contains 𝛿𝑗𝑚𝛿𝑖𝑚. According to rule (20) this is the same as 𝛿𝑗𝑚𝛿𝑚𝑖. Ac-

cording to rule (22) this contracts to 𝛿𝑗𝑖: 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑗𝑙𝛿𝑗𝑖

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑙𝛿𝑗𝑚
(𝑥𝑛𝑥𝑛)

3/2 
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (56) 
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The numerator of the second fraction now reads 𝛿𝑗𝑙𝛿𝑗𝑖. According to rule (20) this is the same as 𝛿𝑙𝑗𝛿𝑗𝑖. Accord-

ing to rule (22) this contracts to 𝛿𝑙𝑖: 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑙𝑖

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑙𝛿𝑗𝑚
(𝑥𝑛𝑥𝑛)

3/2 
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (57) 

According to rule (23) the following can be simplified in the numerator of the third fraction: 𝑥𝑚𝛿𝑗𝑚 = 𝑥𝑗 . 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑙𝑖

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑖𝑙𝑥𝑗𝑥𝑗
(𝑥𝑛𝑥𝑛)

3/2 
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (58) 

Now, 
𝑥𝑗𝑥𝑗

(𝑥𝑛𝑥𝑛)
3/2  in the third fraction is nothing else than 

1

√𝑥𝑛𝑥𝑛
: 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑙𝑖

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (59) 

According to rule (20) the Kronecker-delta 𝛿𝑙𝑖  in the second fraction is the same as 𝛿𝑖𝑙: 

 𝑣𝑖 =
3𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
−
𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (60) 

The first three fractions can now be combined: 

 𝑣𝑖 =
𝑞𝑙𝛿𝑖𝑙

√𝑥𝑛𝑥𝑛
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (61) 

According to rule (23) the numerator of the first fraction can be further simplified as follows:  𝑞𝑙𝛿𝑖𝑙 = 𝑞𝑖  

 𝑣𝑖 =
𝑞𝑖

√𝑥𝑛𝑥𝑛
+
𝑞𝑙𝑥𝑚𝑥𝑗𝛿𝑖𝑚𝛿𝑗𝑙
(𝑥𝑛𝑥𝑛)

3/2  
 (62) 

In the numerator of the second remaining fraction, according to rule (23), the following can be simplified: 
𝑥𝑚𝛿𝑖𝑚 = 𝑥𝑖  and 𝑥𝑗𝛿𝑗𝑙 = 𝑥𝑙: 

 𝑣𝑖 =
𝑞𝑖

√𝑥𝑛𝑥𝑛
+

(𝑞𝑙𝑥𝑙)𝑥𝑖
(𝑥𝑛𝑥𝑛)

3/2  
 (63) 

This can be back -converted into vector notation using rules (a), (b) and (d): 

 �⃗� =
�⃗�

‖�⃗�‖
+
(�⃗� ∙ �⃗�)�⃗�

‖�⃗�‖3  
 (64) 
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8 Appendix 

When converting from index notation to vector-matrix notation, there are occasionally expressions for which 
the solution is not immediately obvious using the conversion rules given in chapter 4. For such cases, the fol-
lowing table offers a little help. 

Index Notation Equivalent Vector-Matrix-Notation 

𝜕𝑖𝑢𝑗𝑣𝑗  ∇⃗⃗⃗(�⃗⃗� ⋅ �⃗�) 

𝜕𝑗𝑢𝑖𝑣𝑗  (∇⃗⃗⃗�⃗⃗�)
𝑇
�⃗� ≡ ∇⃗⃗⃗(�⃗⃗� ⋅ �⃗�) − �⃗� × (∇⃗⃗⃗ × �⃗⃗�) 

M𝑖𝑗𝑣𝑗 M̳�⃗� 

𝑣𝑖M𝑖𝑗  �⃗�𝑇M̳ ≡ �⃗� ⋅ M̳ 

𝜕𝑖M𝑖𝑗  ∇⃗⃗⃗𝑇M̳ ≡ ∇⃗⃗⃗ ⋅ M̳ 

𝜕𝑗M𝑖𝑗  (∇⃗⃗⃗𝑇M̳𝑇)
𝑇
≡ (∇⃗⃗⃗ ⋅ M̳𝑇)

𝑇
 

𝑢𝑗𝑣𝑖𝑤𝑗 − 𝑢𝑗𝑣𝑗𝑤𝑖  �⃗⃗� × �⃗� × �⃗⃗⃗� 

𝜕𝑗𝑢𝑖𝑣𝑗 − 𝜕𝑖𝑢𝑗𝑣𝑗 (∇⃗⃗⃗ × �⃗⃗�) × �⃗� 

𝜕𝑖𝜕𝑗𝑣𝑗 − 𝜕𝑗𝜕𝑗𝑣𝑖  ∇⃗⃗⃗ × ∇⃗⃗⃗ × �⃗� 

 
Note: The variants underlined in red (“inner product of a column vector with a matrix”) may appear in the liter-
ature, but should be avoided, as there is no general consensus on this notation. 
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